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’ INTRODUCTION

Multicomponent reactions have received considerable atten-
tion because of their wide range of applications in organic and
medical chemistry. Such reactions are able to create combinatorial
libraries of complex and diverse structures in efficient fashion by
virtue of their convergent nature.1,2 Several new designed multi-
component reactions have been reported recently,3,4 including
processes that take advantage of Huisgen 1,4-dipoles formed from
the addition of nitrogen heterocycles or amines to electron-
deficient alkynes.5�10 Thus, domino reactions involving primary
amines, acetylenedicarboxylates, and a third component have been
provided elegant procedures for the synthesis of various N- and N,
O-heterocycles.11�13 We have reported related four-component
reactions of aromatic aldehydes, arylamines, acetylenedicarboxy-
late and acetonitrile derivatives, providing quick access to poly-
substituted dihydropyridines.14 To obtainmore information about
this novel multicomponent reaction and to examine its substrate
scope and limitations, we replaced nitrile-activated components
with cyclic 1,3-dicarbonyl compounds. We report here efficient
four-component assemblies with these building blocks, producing
structurally diverse 3,4-dihydropyridin-2(1H)-one and 3,4-dihy-
dro-2H-pyran derivatives.

’RESULTS AND DISCUSSION

At first we investigated the reactivity of Meldrum acid in the
four-component reaction. Meldrum’s acid proved to be an active
component in reactions performed in ethanol solution in the
presence of triethylamine as base catalyst at elevated temperature
(50�60 �C) for six hours. 3,4-Dihydropyridin-2(1H)-ones
1a�1h were produced in moderate yields (41�60%) as shown
in Table 1. To increase the yields of 3,4-dihydropyridin-2(1H)-
ones, the reaction conditions were also examined. But these
trying did not provided much better results. The lower yields of

the products might be due to a competitive ring-opening and
subsequent decarboxylation of the Meldrum’s acid moiety in
hot basic solution. The four-component reaction proceeded
smoothly with normal and electron-deficient aromatic amines
and aldehydes. The structures of the two representative com-
pounds (1c and 1h) were determined by X-ray diffraction; the
structure of 1c is shown in Figure 1. The reaction mechanism
(Scheme 1) is believed to involveMichael addition of the 1,3-dipole

Table 1. Synthesis of Polysubstituted 3,4-Dihydropyridin-
2(1H)-ones

entry compd Ar Ar0 yield (%)a

1 1a C6H5 p-CH3C6H4 41

2 1b p-(CH3)2CHC6H4 p-CH3C6H4 46

3 1c p-ClC6H4 p-CH3C6H4 58

4 1d m-ClC6H4 p-CH3C6H4 53

5 1e m-NO2C6H4 p-CH3C6H4 60

6 1f C6H5 C6H5 45

7 1g C6H5 p-ClC6H4 47

8 1h p-ClC6H4 p-ClC6H4 52
a Isolated yields. All compounds were characterized by 1H, 13C NMR.
Reaction conditions: Et3N(0.5 equiv.), EtOH, 50�60 �C, 6 h.

Received: March 3, 2011
Revised: April 26, 2011

ABSTRACT: A protocol has been developed for the efficient
synthesis of structurally diverse 3,4-dihydropyridin-2(1H)-ones
and 3,4-dihydro-2H-pyrans via four-component reactions of
arylamines, acetylenedicarboxylate, aromatic aldehydes and
cyclic 1,3-diketones. The selective formation of the very different
pyridinone or pyran derivatives depends on the structure of cyclic 1,3-diketone. The key steps are proposed to involve Michael
addition of the enamino ester formed in situ from the reaction of arylamine with dimethyl acetylenedicarboxylate to arylidine cyclic
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intermediate (B) to the arylidene Meldrum’s acid condensate
(A), followed by intramolecular nucleophilic substitution in inter-
mediate (C) to form the cyclic amide with elimination of acetone
and carbon dioxide. Dihydropyridinone ring system constitutes a
group of natural biologically active compounds such as alkaloids
which have attracted much attention owing to their wide range of
biological activities. The most synthetic approaches have been
concentrated on the 1,4-dihydropyridinone and its derivatives.
But the synthesis of 3,4-dihydropyridin-2-one has not been explored
widely and there were only limited literature precedents for their
synthesis.15,16Here we are successfully provided an efficient route to
polysubstituted 3,4-dihydropyridin-2-ones starting from readily
available starting materials.

The replacement of Meldrum’s acid with dimedone produced
complex mixtures of products when triethylamine was used to
catalyze the four-component reaction. An exploration of several
parameters (including base catalyst, solvent, temperature, the
sequence of addition of substrates) provided dramatic improve-
ments. Optimal results were obtained by carrying out the four
component reaction at room temperature for about one daywithout
using any catalyst. The resulting precipitates were collected by
filtration and were found to be novel polysubstituted 3,4-dihydro-
2H-pyrans such as 2a (Table 2). 3,4-Dihydro-2H-pyran moiety is a
fundamental structural unit of biologically active compounds. These
types of compounds have previously been accessed only by more
cumbersome multistep procedures.17�20 We are pleased to find a
convenient method for the synthsis of polysusbtituted 3,4-dihydro-
2H-pyrans via a four-component reaction. A variety of electron-poor
and electron-rich aromatic aldehydes and amines were found to
react very smoothly to provide the analogous dihydro-2H-pyrans in
satisfactory yields (64�85%) as shown in Table 2.

The structures of 3,4-dihydro-2H-pyrans 2a�2m were fully
suppported by elemental analysis, 1H and 13C NMR, MS, and IR
spectra, and were further confirmed by single-crystal X-ray
diffraction studies performed on compounds 2f (Figure 1) and
2j. The most surprising feature of the structure of 2a�2m is the
fact that one carbonyl group of dimedone took part in cyclization,
rather than the amino group, giving the oxygen-containing six-
membered ring. Two diastereomers in each product were clearly
identified in 1HNMR spectra in ratios of 5:1 to 7:1, reflecting the
cis/trans relationship of the two ester groups. For example, 2a
showed a doublet at 4.20 ppm for the proton at C-4 of the major
(trans) isomer and a corresponding doublet at 4.33 ppm for the
minor (cis) isomer; other resonances showed similar differences.
The X-ray single-crystal molecular structure of 2f and 2j showed
the aryl group at C-4, ester group at C-3 and ester group at C-2 to
be in the all trans-configuration, corresponding to the major
isomer of the product.

A similar reactivity pattern was observed with 1,3-cyclohex-
anedione and 4-hydroxycoumarin as dicarbonyl components,
giving the corresponding polysubstituted 3,4-dihydro-2H-pyrans
(3a�3e) in 66�78% yields (Table 3) and tricyclic compounds
(4a�4e) in 62�75% yields (Table 3). Benzylamine was also
incorporated in place of anilines in reactions with dimedone,
giving 3,4-dihydro-2H-pyrans 5a�5j in 63�81% yields. Taken
together, these reactions provided 20 new 3,4-dihydro-2H-pyran
derivatives, of which three were characterized by X-ray crystal-
lography (3b, 4b (Figure 1) and 5b. 1H NMR spectra indicated a
strong preference for only one isomer, presumably that observed
by crystallography having trans relationships between the two
ester groups and between the aryl group at C-4 and ester at C-3.

Scheme 2 shows a plausible reaction mechanism for these
multicomponent transformations, starting with the same type of
Knoevenagel andMichael condensation intermediates (A andB)
employed in the Meldrums acid reactions above.17 Michael
addition of 1,3-dipolar intermediate B to A should give C, which
is isomerized to D by ketone-enol tautomerization. Intramolec-
ular addition of the enolate to the electron-deficient alkene unit
(or its imine/iminium tautomer, not shown) provides inter-
mediateE, which in turn is converted to the final 3,4-dihydro-2H-
pyran 2 by protononation. The stereochemistry of the 3,4-
dihydro-2H-pyran is controlled by the cis/trans configuration
of the in situ formed intermediate (B) and the three sequential
reaction steps in the reaction mechanism. The addition of
arylamines to but-2-enedioates has been reported to give both

Figure 1. Molecular structure of 3,4-dihydropyridin-2(1H)-one 1c and 3,4-dihydro-2H-pyrans 2f, 4b.

Scheme 1. Proposed Mechanism of the Formation of 3,4-
Dihydropyridin-2(1H)-ones
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cis- and trans-isomers, depending on the nature of the solvent,
substituent, and concentration of the reactants.21 Recently Jiang
reported 2-arylamino fumarates (trans-isomers) to be favored in
protic solvents such as methanol and ethanol and the corre-
sponding maleates (cis-isomers) to be favored in nonprotic
media such as DMF.22 In our case, the two Michael addition
steps and the protonation step in Scheme 2 are all reversible and
in thermodynamic equilibrium, giving rise to the more stable 2,3-
trans/3,4-trans isomer as the major product. A direct hetero-
Diels�Alder addition of the 1,3-dipolar intermediate (B) to
arylidene dimedone (A),23,24 could be ruled out as an alter-
native mechanism, since the stereochemical outcome should be
different.

’CONCLUSION

In summary, we have developed an interesting four-
component reaction of aromatic aldehydes, cyclic 1,3-diketones,
aryl amines, and dimethyl acetylenedicarboxylate providing two
different classes of products depending on the nature of the
dicarbonyl component. Mechanisms for the formation of the
resulting 3,4-dihydropyridin-2(1H)-ones and 3,4-dihydro-2H-
pyrans derivatives are proposed in which stereochemistry is
controlled by thermodynamic factors. The potential uses of the
reaction in synthetic and medicinal chemistry may be significant,
since the products share structural and functional group proper-
ties with a variety of biologically active molecules. Further
expansion of the reaction scope and synthetic applications of
this methodology are in progress in our laboratory.

’EXPERIMENTAL SECTION

1. Typical Procedure for the Four-Component Reaction of
Arylamines, Dimethyl Acetylenedicarboxylate, Aromatic
Aldehydes and Meldrum Acid. A mixture of aromatic aldehyde

(2.0 mmol), meldrum acid (2.0 mmol, 0.288 g), and triethylamine
(1.0 mmol, 0.101 g) in 5.0 mL ethanol was stirred at room for ten
minutes. Then a solution of arylamine (2.0 mmol) and dimethyl
acetylenedicarboxylate (2.0 mmol, 0.284 g) in 5.0 mL ethanol was
added to it. The whole solution was stirred the elevated temperature
(50�60 �C) for six hours. In most cases the resulting precipitates were
collected by filtration and washed with cold alcohol to give the pure
product for analysis. In fewer cases the products were further purified
with SiO2 thin-layer chromatograph with ethyl acetate and light
petroleum (V/V = 1/3) as elute to give the product 1a: yellow solid,
41%, mp 147�149 �C; 1H NMR (600 MHz, CDCl3) δ 7.38�7.34
(m, 4H, ArH), 7.27 (t, J = 6.6 Hz, 1H, ArH), 7.19 (d, J = 7.8 Hz, 2H,
ArH), 7.05 (d, J = 6.6 Hz, 2H, ArH), 4.31 (d, J = 7.2 Hz, 1H, CH), 3.68
(s, 3H, OCH3), 3.50 (s, 3H, OCH3), 3.21 (dd, J1 = 7.8 Hz, J2 = 16.2 Hz,
1H, CH2), 2.96 (d, J = 16.2 Hz, 1H, CH2), 2.35 (s, 3H, CH3);

13C NMR
(150 MHz, CDCl3) δ 168.5, 165.6, 163.3, 144.7, 139.9, 139.2, 133.3,
129.8, 129.1, 128.8, 127.5, 126.7, 109.4, 52.6, 52.3, 38.6, 36.7, 21.3;
IR(KBr) υ 3021, 2953, 1739, 1707, 1633, 1506, 1433, 1347, 1300, 1257,
1204, 1146, 1112, 1069, 987, 849, 803, 754 cm�1; MS (m/z) 378.26
([M � 1]þ) 100%. Anal. Calcd for C22H21NO5: C 69.64, H 5.58, N
3.69; Found C 69.78, H 5.81, N 3.54.
2. Typical Procedure for the Four-Component Reaction of

Arylamines, Dimethyl Acetylenedicarboxylate, Aromatic
Aldehydes, and Dimedone. A mixture of arylamine (2.0 mmol)
and dimethyl acetylenedicarboxylate (2.0 mmol, 0.284 g) in 5.0 mL
ethanol was stirred at room for ten minutes. Then aromatic aldehyde
(2.0 mmol), dimedone (2.0 mmol, 0.284 g) was added. The whole

Table 2. Synthesis of Polysubstituted 3,4-Dihydro-2H-pyrans

entry compd Ar Ar0 yield (%, trans/cis)a

1 2a C6H5 p-CH3C6H4 71 (6:1)

2 2b p-CH3C6H4 p-CH3C6H4 67 (6:1)

3 2c p-(CH3)2CHC6H4 p-CH3C6H4 72 (5:1)

4 2d p-CH3OC6H4 p-CH3C6H4 64 (6:1)

5 2e p-FC6H4 p-CH3C6H4 69 (7:1)

6 2f p-ClC6H4 p-CH3C6H4 78 (7:1)

7 2g p-BrC6H4 p-CH3C6H4 75 (7:1)

8 2h m-NO2C6H4 p-CH3C6H4 85 (7:1)

9 2i p-CH3C6H4 C6H5 62 (7:1)

10 2j p-CH3C6H4 m-ClC6H4 74 (6:1)

11 2k p-CH3C6H4 p-ClC6H4 75 (6:1)

12 2l p-CH3C6H4 p-CH3OC6H4 76 (6:1)

13 2m p-(CH3)2NC6H4 p-CH3OC6H4 71 (6:1)
a Isolated yields. All compounds were characterized by 1H, 13C NMR.
The ratios of trans/cis were estimated by 1HNMR. Reaction conditions:
EtOH, r.t., 24 h.

Table 3. Synthesis of 3,4-Dihydro-2H-pyran Derivatives

entry compd Ar Ar0 yielda (%)

1 3a p-ClC6H4 C6H5 66

2 3b p-ClC6H4 p-CH3C6H4 71

3 3c m-NO2C6H4 p-CH3C6H4 78

4 3d p-ClC6H4 p-ClC6H4 75

5 3e p-CH3C6H4 p-CH3OC6H4 69

6 4a p-ClC6H4 p-CH3OC6H4 66

7 4b m-ClC6H4 p-CH3C6H4 62

8 4c p-CH3C6H4 p-ClC6H4 70

9 4d m-NO2C6H4 p-CH3C6H4 72

10 4e m-NO2C6H4 p-ClC6H4 75

11 5a C6H5 CH2C6H5 65

12 5b p-CH3C6H4 CH2C6H5 68

13 5c p-(CH3)2CHC6H4 CH2C6H5 68

14 5d m-(CH3)3CC6H4 CH2C6H5 73

15 5e p-CH3OC6H4 CH2C6H5 68

16 5f p-FC6H4 CH2C6H5 70

17 5g m-ClC6H4 CH2C6H5 63

18 5h p-ClC6H4 CH2C6H5 73

19 5i p-BrC6H4 CH2C6H5 70

20 5j m-NO2C6H4 CH2C6H5 81
a Isolated yields. All compounds were characterized by 1H, 13C NMR.
Reaction conditions: EtOH, r.t. 24 h.
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solution was stirred at room temperature for additional about 24 h. The
resulting precipitates were collected by filtration and recrystallized in a
mixture of ethanol and dimethyl formamide (V/V = 10/1) to give the
pure product for analysis. 2a: white solid, 71%, mp 171�172 �C; 1H
NMR (600 MHz, CDCl3) δ 7.26�7.24 (m, 3H, ArH), 7.13 (d, J = 7.8
Hz, 2H, ArH), 6.98 (d, J = 8.4 Hz, 2H, ArH), 6.74 (d, J = 8.4 Hz, 2H,
ArH), 5.44 (brs, 1H, NH), 4.20 (d, J = 10.2 Hz, 1H, CH), 3.56 (s, 3H,
OCH3), 3.51 (s, 3H, OCH3), 3.18 (d, J = 10.2 Hz, 1H, CH), 2.60 (d, J =
17.4 Hz, 1H, CH2), 2.34 (d, J = 17.4 Hz, 1H, CH2), 2.24 (s, 3H, CH3),
2.17 (s, 2H, CH2), 1.15 (s, 3H, CH3), 1.01 (s, 3H, CH3);

13CNMR (150
MHz, CDCl3) δ 195.9, 171.5, 168.7, 166.5, 141.2, 140.8, 129.7, 128.6,
128.2, 127.2, 126.9, 126.8, 125.9, 115.6, 113.3, 87.8, 54.1, 53.1, 52.6, 50.7,
42.0, 38.8, 31.7, 31.4, 29.2, 27.6, 20.5; IR(KBr) υ 3391, 3022, 2960,
2876, 1759, 1729, 1643, 1592, 1519, 1434, 1370, 1348, 1317, 1265, 1232,
1168, 1047, 1006, 940, 820, 756 cm�1; MS (m/z) 478.55 ([M þ 1]þ)
100%. Anal. Calcd for C28H31NO6: C 70.42, H 6.54, N 2.93; Found C
70.35, H 6.82, N 2.71. The same reaction procedure was carried out by
using other cyclic 1,3-dicarbonyl compounds and other amines in the
reactions to give 3,4-dihydro-2H-pyran derivatives 2b�2m, 3a�3e,
4a�4e, and 5a�5j.
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